Loading

15 June 2008

Blood Batteries


Batteries are practically essential devices but present a whole host of problems. Over time they can have trouble retaining a charge. Some stop working altogether. Others overheat or leak or even explode. They're also rigid and sometimes bulky. Then how about, instead of your standard AA or lithium-ion, a flexible, incredibly thin battery that could be powered by blood or sweat? Seems like an improvement, right?

Some bio-batteries can extract energ from many forms of sugar,whether it's blood glucose or a soft drink.

A group of scientists at Rensselaer Polytechnic Institute claims they've created just such a battery, one that uses the electrolytes naturally found in bodily fluids. The results of the research, detailed in the Aug. 13, 2007, issue of the Proceedings of the National Academy of Sciences, are generating some excitement as part of a new crop of "bio-batteries" that run off of bodily fluids or other organic compounds. (The RPI team claims that theirs could even run on tears or urine.)

RPI's battery is paper-thin, can be cut into a variety of shapes and runs on blood or sweat.

The battery is not only as thin as paper; it essentially is paper. At least 90 percent of the battery is made from cellulose, which makes up traditional paper and other paper products [source: RPI]. Aligned carbon nanotubes make up the other 10 percent, give the paper its conductive abilities and also make it black. The nanotubes are imprinted in the very fabric of the paper, creating what's called a nanocomposite paper. One of the paper's authors said that the battery "looks, feels and weighs the same as paper" [source: RPI].

Using nanotechnology, the battery's small size, flexibility and replenishing electrolyte source -- that is, as long as you eat -- make it ideal for medical applications. When using the battery away from the human body, scientists soaked the paper in an ionic fluid (a salt in liquid form), which provides the electrolytes.

The battery's paper-like construction grants it significant flexibility. The RPI research team believes that the battery could, in the future, be printed in long sheets, which could then be cut into small, custom-shaped batteries. The nanocomposite paper can have holes poked in it or be cut into unusual shapes and continue to function. Several sheets could be lumped together to power medical implants, such as pacemakers, artificial hearts or advanced prosthetics. The battery would easily fit under the skin without causing any discomfort.

Because the ionic liquid used doesn't freeze or evaporate like water, the battery could be employed at a wide range of temperatures: from -100 degrees Fahrenheit up to 300 degrees Fahrenheit. Its temperature resistance and light weight mean that manufacturers of automobiles and airplanes -- both of which require light, durable materials -- may come calling.

The researchers behind the battery claim that their device is unique because it can act "as both a high-energy battery and a high-power supercapacitor" [source: RPI]. Supercapacitors allow for large, quick bursts of energy, potentially extending the technology's already wide range of applications.

The battery, which is considered environmentally friendly because of its lack of chemicals and high cellulose content, was announced in the summer of 2007, but it may be years before it's ready to stream off production lines in long sheets. The RPI research team says that, in the meantime, they're trying to boost the battery's efficiency and to figure out the best method for production.

It's not just researchers at the Rensselaer Polytechnique Institute who are working on bio-batteries. Many other corporations, universities and research foundations are competing to produce viable batteries that can be powered off of organic compounds, especially human fluids. Researchers consider sugar and human blood glucose potentially valuable sources of power because they occur naturally, are easily accessible and don't produce harmful emissions.

0 comments:

Post a Comment

Edited by Youngistan and template from Dicas Blogger
2009 ©Youngistan | Privacy Policy | Disclaimer: Some contents in this blog are either obtained, discovered or found in the public domain and are intended for educational purposes only.We claim no credit for any visual contents, images, or videos unless otherwise noted. If you own rights to any of the contents featured and do not wish them to appear here, please contact us and they will be promptly removed.